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Quick reference guide for SoftSERVE 0.9
(correlated emissions only)

Step 0 Install using ./configure from program root directory (use flag --MPFR for multiprecision)

Step 1 Bring measurement function into exponential form (see 4.1)

Step 2 Derive parameters n, m, and functions FX (4.2,4.3,4.4)

Step 3 Descend into SCET1 (n 6= 0) or SCET2 (n = 0) folder and edit input files (4.5,4.6)

Step 4 Call make to compile executables (call make list for available individual targets) (4.7)

Step 5 Run binaries from the Executables subfolder manually or using ./execsftsrvNAE script (4.8)

Step 5a Recompile and re-run executables with different border setting to check for rounding errors (4.9)

Step 5b Re-build and run executables using multiprecision variables, if needed (4.10)

Step 6 Combine output of all executables manually or using ./sftsrvresNAE script (4.11)

Step 7 (Only for Fourier space): Call ./fourierconvert script to account for phases (4.12)

Step 8 Renormalise manually or using ./laprenormNAE (4.13)

Syntax for the scripts

Script effect

./configure Install and set up

./configure --MPFR Install with GMP/MPFR support
make list Write list of all possible make targets
make target Build binaries as specified by “target”
make target BOOST=1 Build binaries using multiprecision variables
./execsftsrvNAE -o observable -d subdir Run all binaries and tallies results
./sftsrvresNAE -o observable -d subdir Tally results from individual result files
./fourierconvert -o observable -d subdir Creates Fourier-adjusted results file
./laprenormNAE -o observable -n nvalue -d subdir Renormalise in Laplace space, SCET-1
./laprenormNAE -o observable -d subdir Renormalise in Laplace space, SCET-2
./[any script] -h Explain the script

In all cases, the -d subdir and -n nvalue options (and -h flag, of course) are optional.

target must be replaced with the colour structure target that is supposed to be built, see make list.

observable, nvalue and subdir must be replaced with their observable-dependent values as specified
in the input files (observable and n), or as nested in the directory tree (subdir).

Instead of -o observable, -n nvalue, -d subdir and -h, the user can use --obs=observable, --n=nvalue,
--dir=subdir or --help.
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Chapter 1

Overview

This document serves as the manual for users of SoftSERVE wishing to compute correlated emission
contributions to NNLO bare soft functions for generic observables in settings involving two light-like back-
to-back Wilson lines, with subsequent renormalisation. SoftSERVE in turn can be seen as the analytic
framework laid out in [1] crystallised in C++ code. Therefore [1] should be consulted for any detail on
the analytic background in general, and on the criteria deciding whether observables are amenable to
computation using SoftSERVE, in particular.

This manual is structured to make it accessible mainly for first-time users, with section indices and a
dedicated section for known and typical problems to assist troubleshooters and repeat users. To this
purpose we will lay out the primary requirements and initial setup for the program suite in chapter2.
We then present a brief step-by-step list of the program flow for a typical computation of a hypothetical
observable’s soft function in chapter 3. Each step on this checklist corresponds and links to a subsection
of chapter 4, which explains in detail what needs to be done and why, at that particular step along the
way. We also include a list of known problems and difficulties often encountered, and show how to solve
or circumvent these in chapter 5. We will add problems encountered by users to this list, it will be
updated ad-hoc, as problems are reported to the developers.

Finally, where necessary or helpful we refer to explanatory appendices that lay out the analytic back-
ground or computational circumstances that make a given procedure necessary, if these arise due to
computational considerations. For features originating in the analytic framework, we refer to the main
paper[1] explaining that. We also provide explicit template examples in Appendix E for multiple observ-
ables that we have treated with SoftSERVE, including the relevant program inputs, which should serve
as a guide for users who wish to use SoftSERVE to make novel predictions.
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Chapter 2

Initial installation and setup

A user seeking to use SoftSERVE needs at base level two things:

• Rudimentary understanding of C++ code, slightly above HelloWorld.cpp level and familiarity
with the cmath syntax, and

• a POSIX standard machine equipped with a working C++ compile environment.

The former is required to edit the template C++ files that encode the input for a given observable.
For the latter, the program has been tested on several Linux distributions,various MacOS versions, and
Cygwin1 using gcc/g++, clang/clang++ and icc/icpc.

All dependencies are included in the SoftSERVE package. For a vanilla run of SoftSERVE this is essentially
the Cuba[2] library of numerical integrators.

To setup SoftSERVE simply expand the contents of the tarball downloaded from HEPForge and run

./configure

This sets up the compile commands used later on. Running make does not happen at this stage, we use
it to make the observable dependent executables later on.

The configuration script contains a short explanation of its features, simply call

./configure --help

Attention MacOS users:

If you are only running the Xcode package on your machine and do not have a dedicated, self-
contained, gcc installation, you need to run

./configure CC=clang CXX=clang++

instead. If you do not, the configuration script may mistake clang for gcc, and subsequent compi-
lations may fail.

1Using Cygwin is explicitly not recommended, and using MinGW will fail, both due to their implementation of fork or
lack thereof.
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In some cases (see 4.10) the program needs to internally use multiprecision data types, if the typical C++
double type variables do not provide enough digits to differentiate between two close-by numbers. For
this case we include the header-only boost[3] library’s implementation of multiprecision variables. This
works out of the box and without modification of the installation of SoftSERVE.

However, the implementation of multiprecision floating point calculations via boost is slow, it is in
fact roughly a factor 2 slower than the multiprecision backbone provided by the GMP[4] and MPFR[5]
libraries[6]. We therefore ship the GMP and MPFR libraries as well, in case a user really needs the factor
of 2.

If so, the GMP and MPFR libraries must be compiled during the ./configure call, as well. The script
should then be called via

./configure --MPFR

to enforce this.

As GMP is especially prone to miscompilation we do not recommend compiling those libraries unless you
find that you really need both the multiprecision capability and the slight increase in performance.

It is possible to reconfigure with ./configure --MPFR having already called ./configure alone at some
point before, so we highly recommend not including the --MPFR flag as the default option.

Actually using GMP or MPFR, rather than Boost, requires a small modification of the source code, see
section 4.10 for details.
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Chapter 3

Program flow

The actual step-by-step flow through the program is as follows:

Section 4.1 Bring the soft function into the correct, exponential form.

Section 4.2 Apply the parametrisation for the correlated emission case

Section 4.3 Extract the input required for SoftSERVE from the correctly parametrised exponential.

Section 4.4 Optional: Check again for compatibility with SoftSERVE.

Section 4.5 Write the observable details to the input files.

Section 4.6 Specify the details for the numerical integration.

Section 4.7 Compile the executables.

Section 4.8 Run the executables.

Section 4.9 Check the output for consistency.

Section 4.10 If necessary, recompile using multiprecision and run.

Section 4.11 Optional: Tidy up and get full result.

Section 4.12 Fourier space only: Adjust for phases.

Section 4.13 Optional: Renormalise either by hand or via script.

The reason the approach still requires unscripted action by the user is that maintaining full generality is
difficult if the input for the script isn’t restricted: We could provide scripts or Mathematica notebooks that
handle the parametrisations, but these would likely often fail for intricate observables1. We therefore force
the user to do the analytic part themselves, which e.g. also allows you to use shortcuts where possible,
or use non-trivial analytic properties to simplify expressions.

The next chapter contains all the details about the individual steps phrased as generically as possible.
Then, in order to connect to the real world we provide a number of template observables, for both SCET-1
and SCET-2, in Appendix E. These templates describe what the flow of ideas and actions are that leads
to the correct input files for each observable treated.

1Looking at you, Transverse Thrust...
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Chapter 4

Detailed program steps

4.1 Exponential form

The form of the soft function we want to compute, complete to NNLO — two-loop — order, is derived
in [1] as

S(τ) = 1 +

(
Zααs

4π

)(
µ2τ̄2

)ε
(ντ̄)α SR(ε, α)

+

(
Zααs

4π

)2 (
µ2τ̄2

)2ε (
(ντ̄)

α
SRV (ε, α) + (ντ̄)

2α
SRR(ε, α)

)
+O(α3

s),

(4.1)

where the Si are the Laurent series calculated by SoftSERVE. These are of the schematic form

Si ∼
∫ ∣∣∣A(i)({k})

∣∣∣2︸ ︷︷ ︸
Matrix element

Measurement function︷ ︸︸ ︷
exp(−τω({k}))

∏
R:p=k

RX:p=k,l

2π δ+(p2)

Analytic regulator︷ ︸︸ ︷
(p+ + p−)

−α ddp

(2π)d

︸ ︷︷ ︸
Analytically regularised on-shell phase space

. (4.2)

The matrix elements A are fixed and the same for all possible dijet soft functions (merely different
between loop and real emission numbers) and the analytic regulator is fixed by convention, leaving only
the measurement function to be specified.

The constraints on the measurement function are, to recap [1], as follows:

• It is of the given exponential form.

• The variable τ has a unit of inverse energy, demanding that ω, which encodes the information about
the observable, has mass dimension one.

• ω observes infrared and collinear safety, meaning in particular that the relations ω(2)(k, αk) =
ω(1)([1 + α]k)) and ω(2)(k, 0) = ω(1)(k) between its 1- and 2-particle instances hold.

• ω does not depend on the regulators ε and α. This can in some cases restrict the transformation
to exponential form, if auxiliary Fourier or other transformations are involved.
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• ω is real and non-negative in all of phase space (see appendix B of the main paper[1] for purely
imaginary cases). Note that this requirement for the numerical treatment is stricter than the
assumption for the analytic formulae.

• ω vanishes or diverges only on hypersurfaces of at least codimension one of the full phase space. In
other words, ω can vanish or diverge, but the measure of all those points must be zero, it cannot
vanish on extended regions of the phase space for the emissions.

• It depends at most on one angle per emission, measured between the transverse space component
of the emission momentum and a common reference vector in transverse space.

How this form, in particular the exponential, is achieved, is irrelevant. For many observables, such as
event shapes like Thrust or C-Parameter, a Laplace transform will do it.

The Template Guide section at the end of the manual contains examples of several of these “standard”
observables (Thrust, Threshold Drell-Yan,. . . ), as well as one purely imaginary Fourier space observable
(pT resummation).

4.2 Correlated emission parametrisation

Now we apply the parametrisation for the correlated emission case (i.e. the summand in the matrix
element appearing with CfCA or CfTfnf colour factors) to ω(2)(k, l). For light-cone components of the
two emission momenta we apply:

k+ =
b

a+ b
pT
√
y l+ =

a

a+ b
pT
√
y

k− =
ab

1 + ab
pT

1
√
y

l− =
1

1 + ab
pT

1
√
y
.

(4.3)

We cover the full phase space for k+, k−, l+, and l− if pT , a, b, y ∈ [0,∞[.

The angular parametrisation in the transverse space, assuming the common reference vector is represented
by a unit vector v̂⊥, is given by

~kT ·~lT =
√
k+k−l+l− cos θkl =:

√
k+k−l+l− (1− 2tkl)

~kT · v̂⊥ =
√
k+k− ck =:

√
k+k− (1− 2tk)

~lT · v̂⊥ =
√
l+l− cl =:

√
l+l− (1− 2tl),

(4.4)

where the magnitude of the transverse space vectors is set by the on-shell condition, and the coloured
variables are coded in the C++ program and can be used as variables in the measurement functions.
Whether ci or ti are used is left to the preference of the user.

4.3 Extracting input

The only input we need are the functions FA and FB , and the the parameters n and m. The one-loop
function f is recovered by the program directly via infrared safety.

We extract these from the 2-particle measurement exponential, which now can be written in the form

exp (−τω (k, l)) = exp
(
−pT y

n
2 F (a, b, y, tkl, ck, cl)

)
. (4.5)

6



The pT dependence factorises because pT is the only surviving dimensionful quantity, and we factor out
y

n
2 in such a way that F is finite in the limit y → 01.

We can now already read off the value for the parameter n, and proceed to constructing the measurement
functions FX .

A quick recap to summarise [1]: The integration runs over domains [0,∞[ for the variables a, b, y, which is
bad for numerical integration, which needs finite integral boundaries. We therefore split each integration
domain [1,∞[ into two subdomains, [0, 1] and [1,∞[. Combining all possibilities for the different variables
we find eight distinct integration regions with different integration boundaries for these 3 variables. One
of these, [0, 1]× [0, 1]× [0, 1], we identify as region A, and we identify the function F in equation 4.3 as
the measurement function FA.

Symmetry considerations relate the integration results we get from different regions. We find that we
only need to consider two subregions, one of which we take to be A, the other one — B — we find via
one of three possible mappings:

• Substituting y for 1
y

• Substituting a for 1
a

• Substituting b for 1
b

The measurement function F is in general not the same in the two regions A and B. To get FB we
therefore choose one of the three replacements2, and apply it to the measurement exponential3. We
assign the label FB to the F following the substitution. Note here that the symmetry considerations
state that the value of the integrals in all regions from which we could extract FB match, but not
necessarily the relevant integrands. This means that the forms of FB can depend on which of the three
replacements above you choose.

Finally, we pick any of the functions FX and expand it in the limit of small y, which is of the form
FX ≈ c0 + ymc1 + o(ym), i.e. we extract the parameter m from the first non-constant term in the
expansion of F . For most observables we will find FX ≈ c0 + yc1 + O(y2) (i.e. m = 1), but there are
also observables for which e.g. FX ≈ c0 +

√
y c1 +O(y), (m = 0.5), and there may even be other values

allowed. If no such value can be extracted, or if the extracted value is zero, or if you’re at all uncertain
here, use m = 1.

4.4 Optional: Checking compatibility

If you’re at all uncertain if you’ve made a mistake, or if your programs threw up error messages that lead
you to believe you might have made a mistake in the input extraction. This section lists the constraints
as they manifest themselves on the input. You can skip this section if your functions F and parameters
m and n look reasonable to you.

If you’re unsure, here are the relevant checks:

1“Finite”, as in “generically finite”. There may still be combined limits involving y which vanish/diverge. The usual
candidate is y → 0, ck, cl → 0. As long as y → 0 alone is not sufficient for a zero/divergence, that’s fine.

2The choice is yours, which one is the most suitable is observable-dependent. If your observable depends trivially on a
and intricately on y, maybe invert a, rather than y.

3Careful: The substitutions involving a and b can be applied to FA directly, the substitution for y must also be applied
to the factor y

n
2 .
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• We should now have for the correlated emission input:

– The value for n

– The two functions4 FX(a, b, y, t, ck, cl) with X ∈ {A,B}

– The value for m, except for rare cases, where we use m = 1.

• Both functions F must be non-negative in all, and finite and non-vanishing in most of phase space,
meaning the regions b, a, y, t ∈ [0, 1], and ck, cl ∈ [−1, 1] or tk, tl ∈ [0, 1]. Here “most” of phase
space means that they vanish or diverge only on surfaces of codimension ≥ 1. As you will need it
in the next step, it is advisable to make a list of all appearing zeroes and divergences here already.

• Any combination of one or more of the limits y → 0, b → 0, as well as the combined limit
(a, t)→ (1, 0) must be finite. Only when other variables take on special values alongside them may
the functions F vanish or diverge. If this constraint is violated you either made a mistake in the
derivation of the functions F , or your observable is not infrared and collinear safe.

• The limits b → 0 and (a, t, ck) → (1, 0, cl) of the functions F must reduce to the same function5,
up to exchange of indices k and l.

4.5 Writing input files

Armed with the functions F and the parameters n and m we can now adjust the input files as needed.

First, we choose the branch of the program to be used based on the value for n. If n 6= 0, the correct
branch is the SCET-1 branch. If n = 0, we must use the SCET-2 branch. We descend into the appropriate
subdirectory of the main SoftSERVE package, and everything that follows is applicable to both cases
identically.

4.5.1 Input Common.cpp and Input Parameters.h

We start with the input that is common for all colour structures, in Input Common.cpp.

Here, we give the observable project a name by assigning it to the string called observable. The default
is set to “Observable”.

We then turn to parametric dependence in the observable. Many observables depend on parameters,
e.g. the Angularities event shape with its parameter A, or Transverse Thrust, which depends on a non-
dynamical angle between jet- and beam-axes. These parameters must be properly declared and defined
in the program, as they can’t be left parametric for a numerical evaluation.

To that end we need to add a line of the form

datatype name=value;

4ck and cl may be resolved in terms of tk and tl.
5As a further consistency check you can check if this function matches the function f extracted from the 1-particle

measurement exponential if you parametrise the emission momentum l as l+ = pT
√
y , l− = pT

1√
y

, ~lT · ~nj = pT cl, and

write the exponential as exp(−τω(k)) = exp(−τpT y
n
2 f(y, cl))
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to the Input Common.cpp file for a “datatype”-type parameter with name “name” and value “value”,
and to make it visible to the rest of the program we add the line

extern datatype name;

to the Input Parameters.h file. Both locations are marked with appropriate comments in the respective
files, and the default template does declare and define a floating point parameter called placeholder,
and sets its value to 0.5.

The usual datatype for parameters will be double6, and the name can be freely chosen, with the exception
of a few names which are already taken by internal functions and variables of the program. A list of
prohibited names are listed in table 4.1. This list is not complete, so if your code fails to compile, try
giving the parameters a different name.

a A B beta c ck Ck Ck1 Ck2 cl Cl decimal

f FA FB FA1 FA2 FB1 FB2 GAa GAb GA1a GA1b GA2a

GA2b GB GB1 GB2

n m M mexp mm q r s s5 s6 t T t5 tk Tk1

Tk2 tkl t6 u v w x xk xl y yk yl z

Table 4.1: List of prohibited parameter names. A large number of longer names of functions has been omitted,
as we judge the chance of your parameters being called maxpass or PreRVEM3 rather low.

Note: This list only applies to names of parameters you define for your observable. In the Input files
you should of course use a, y, and all other variables directly — you can’t use them as parameter
names precisely because they’re already taken by the integration variables.

Finally for Input Common.cpp we input the value for n (SCET-1 case only) and m extracted before at
the appropriate places7.

4.5.2 Input Measurement Correlated.cpp

Here we insert the definitions of the functions FX we derived using the correlated emission parametrisation
below the giant comment stating “Measurement functions Correlated”. There are two predefined C++
functions, one for each of the two functions, of the form (here for A)

double FA(v,t6,y,tk,u,b) {

((variable definitions))

((comment))

FA=[[assignment]];

[[catching zeroes or divergences]]

6Though integer and float are also possible.

7Reminder: m
!
> 0, and if that doesn’t come out naturally, use m = 1.
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((fail-safe and return))

}

where double brackets denote a code fragment by its purpose, and round vs. square brackets denote
pre- vs. user-defined input. The FX functions must be entered at [[assignment]] in C++ cmath

syntax, and all zeroes or divergences must be set to a value other than 0 or ∞ in [[catching zeroes

or divergences]]. This also applies to non-trivial limits of e.g. the form a
a+b , which is analytically

finite for all relevant variable values, but can look to a straightforward evaluation like the ill-defined 0
0 .

It is advisable to treat this as an exercise in evading Murphy’s Law: If there is any possible way for your
function to be evaluated that results in superficially ambiguous expressions, C++ will almost certainly
find it. Here we try to idiot-proof the input accordingly8, via if-clauses that set the function to its correct
value in these cases. There are a few template observables that show this problem.

The template code assumes a measurement function FX =
√
a (1 + placeholder ∗ ck)2, which is zero at

a = 0. Accordingly, this zero is defused using an if-clause in [[catching zeroes or divergences]].
We suggest setting the function to 1 in such cases.

For the definition of angle dependent functions you can use either the predefined ck and cl as stand-ins
for cos θk and cos θl, or tk or tl for the ti defined by cos θi = 1− 2ti, or you can mix and match.

If you feel the need to define internal variables to store intermediate results inside one of the functions
FX , please use decimal type variables wherever you’d usually use double type variables. This is
related to multiprecision issues and is explained in appendix C.

For an argument about why setting arbitrary function values at zeroes is okay, as well as more information
about the parameter m, which is related to this issue, see appendix A.

4.6 Input Integrator.cpp

Now we proceed to the settings for the integrator, where we here list all settings and how they can be
adjusted.

First, note that some setting variables come with integer suffixes, like epsrel2 or key12. This originates
from a splitting in the number of integration variables, with the reasoning that lower dimensional integrals
are easier to solve and will converge quicker to more precise values. So we can increase the precision of
the overall result at fixed running time by computing the lower dimensional integrals really precisely, but
allowing the higher dimensional ones to be a bit less precise, and having them all finish in reasonable
time.

We find that we need between 2 and 5 integration dimensions, so we have variables like epsrelI with
I∈ {2, 3, 4, 5}.

The relevant settings now are:

epsrelI The required relative accuracy, i.e. we demand that the numerical evaluation for the I-
dimensional integral terminates only once, for a given integral estimate E and error estimate

8In the words of The Doctor: ‘The trouble with computers is, of course, that they’re very sophisticated idiots.”
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∆, the relation ∆ ≤ |epsrelI ·E| is fulfilled. Due to technical reasons the accuracy we achieve
is typically of one to two orders of magnitude higher than the what is set here. Diminish-
ing returns set in rather quickly — varying the default settings by more than two orders of
magnitude will usually only increase computing time, not the precision.

The default usually produces results accurate to ∼ 10−3 relative precision. A second set of
suggested variables for ∼ 10−5 relative precision is provided, as well.

keyJI Although the Cuba library[2] provides several numerical integrators, we only use one: the
choice of Divonne is hard-coded. The three settings key1I, key2I, and key3I set the precise
integration strategy Divonne uses for the I-dimensional integration, i.e. whether to use random
number sampling or cubature rules, the choice of random number generator, etc.

For details we refer to the Cuba manual [2]. The default settings amount to a first partitioning
stage using deterministic cubature rules, followed by a sampling stage using Korobov random
numbers, followed by a refinement strategy.

We strongly suggest not changing these settings. Trial and error has shown that this combi-
nation of partitioning and sampling yields the best results - it is the origin of the two order of
magnitude improvement we mention above; Korobov sampling improves on cubature. Other
settings don’t show this feature, or may even increase the error estimate in the sampling step.

maxpassI Divonne’s partition stage as a crude first approximation may miss important feature of the
integrand. We therefore can force it to add an additional maxpass partitioning steps once
it has concluded that it is ready to proceed to the sampling stage. This is the easiest dial
to crank up precision, and the only difference between the standard and precision template
settings is here.

This value is essentially arbitrary, but 25 yields good results.

maxchisq and the next setting,

mindev, set the criteria for the refinement stage. Divonne partitions the integration region, and then
samples. If the tentative result for a partition region from the partitioning stage, when com-
pared to the final result from sampling, fails a χ2-test by exceeding maxchisq, the subregion
is sent to refinement if the error estimate of its contribution to the total error estimate is at
least a fraction of mindev of the total error estimate. In other words, Divonne only refines if
there is both something to refine and doing so is worth it.

The default values work well enough here. Play around with them at your leisure.

border This setting is the reason we hard-coded Divonne. It delineates an exclusion zone of width
border at the boundaries of the integration region. Sampling points inside this region are not
sampled directly, but extrapolated from two points outside the exclusion zone, i.e. inside the
bulk of the integration region. We use this feature because the integrand exhibits suppressed
logarithmic divergences of the form x lnx at the integration boundaries. Using the border

feature suppresses numerical instabilities. The full explanation can be found in appendix A.

We suggest varying the default value by two orders of magnitude at best — if it is too small we
encounter numerical instabilities, and if it is too large we introduce systematic uncertainties.
It is also related to the “BOOST” feature, which we encounter in section 4.10.
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maxevalI This feature introduces a hard cutoff on the number of integrand function evaluations. We
want in general to be guided by the error estimates, hence we choose a large value for these
variables. Nevertheless, in some cases it can be nice to have a setting that just kills the
integration if it takes too long, so we leave this here.

seed In case the integration strategy is changed (different key settings), seed governs the choice of
random number generator. For details see the Cuba manual[2].

flags This variable sets the verbosity of the integrator. flags=3 floods you with log files, whereas
flags=0 is silent. Choose intermediate integers freely.

epsabsI Purely maintained for compatibility. Where epsrelI sets a termination constraint on the
relative error, epsabsI sets one on the absolute error. Whichever is fulfilled first, wins. For the
numerical integration we separate constant prefactors from integrand structures, so epsabsI

would set constraints on meaningless intermediate results, so we don’t use it. Listed purely in
case somebody really needs it, for whatever reason.

4.7 Compiling executables

Having edited the input files we are now ready to compile and then run the executables for a given
observable’s soft function.

To that end we call make from the folder containing the input files and the makefile.

The makefile will compile the different object files containing numerator functions, prefactors and the
input data, and link everything together to form three files in the Executables folder. The filenames are
generated from the value of the observable string in Input Common.cpp, by adding one of three suffixes:

1P This executable will calculate the regulator pole coefficients for the 1-loop soft function and the
2-loop real-virtual interference contribution, to the orders required for renormalisation9

CA denotes the executable for the CFCA colour structure, absent the real-virtual interference 1-particle
cut contribution, which is computed by the 1P executable

NF The CFTfnF contribution to the bare soft function is computed by the executable with this suffix.

The strategy using make is sensitive to recycling of object files. After the first run the input-independent
object files do not have to be recompiled, and only files modified between make calls will be recompiled.

To single out individual colour structures for compilations and to provide auxiliary functions, the following
targets have been defined:

all Default, same as running make without a target

list Prints a short card listing all targets and their function

clean Removes the intermediate object files

purge Removes the intermediate object files and all executables in the Executables folder ad-
hering to the standard naming scheme (i.e. ending in one of the three suffixes). Subfolders
of Executables are not affected.

9i.e. there are positive regulator power coefficients computed in the 1-loop result.
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1P Only compiles the 1P executable

CA Only compiles the CA executable

NF Only compiles the NF executable

correlated Only compiles the 1P, CA and NF executables

To use the boost library’s multiprecision variables, which is described in detail in section 4.10, we set10

BOOST=1.

So to compile the CFCA colour structure executables using multiprecision variables we’d call

make CA BOOST=1

Without multiprecision variables, we just use

make CA

4.8 Running the executables

To run the executable simply either descend into the Executables folder and run them directly and
manually, or run the execsftsrvNAE script from the directory containing the input files and makefile.
Its syntax is

./execsftsrvNAE -o observable -d subdir

where observable must match the name of the binaries without suffix11, and subdir is an optional
argument specifying a subdirectory in the Executables folder, in which the binaries may reside.

The ./execsftsrvNAE script runs the three executables in the order 1P→ NF→ CA, which corresponds
for typical observables to the ordering “fastest-to-slowest”, meaning that 1P usually terminates quicker
than NF, with CA taking the longest. It then combines the three results into one final result, writes that
to the file “Result observable Full.txt”, and moves the executables to a subfolder for storage.

The executables will run sequential numerical integrations over 2D (first) to 5D (last) domains. This
means that for a given colour structure the leading, most divergent, regulator poles are the first results to
be available. This strategy was chosen because mistakes in the input can then in some cases be spotted
from the leading poles, which are available quickly.

During the executables’ run the status and results are printed to the console, the results are also written
to a result file, and the output of the numerical integration is funnelled into log files, with result and log
files both in the resident folder of the executable that’s running.

4.9 Consistency checks

So you’ve run the executables, your integrations have terminated and the results are in. Now we need to
check for the single biggest problem facing our program: Rounding errors.

10In principle any value different from 0 is fine, even strings. BOOST=thecakeisalie would work as well.
11i.e. if observable is “abcd”, the script expects to find three binaries called “abcd 1P”, “abcd CA”, and “abcd NF”
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The details of why this problem appears can be found in appendix 4.10, so here we only mention how
to check for its appearance. Put succinctly the problem is related to the fact that double type variables
in C++ only store about ∼ 15 digits of a number, which can lead to problems if two almost identical
numbers are subtracted. In most cases the appearance of the problem will manifest itself by the numerical
evaluation returning NaN, but in principle it can lead to simply a wrong result which is not obviously
wrong at first glance.

Fortunately for us the problem only appears in its critical form at the boundaries of the integration
domain, which is subject to special treatment thanks to the border12 variable.

To check for rounding errors we therefore suggest that you run the program at least twice, the second
time with a settings for border which differs from the first by two orders of magnitude. 10−6 and 10−8

are good values, for example. If you have read appendix C and are confident that your observable is not
affected, you can skip this step, at your own peril.

If you do run twice and do get different results between the two runs, or if one of the two runs returns
NaN, follow the strategy in the next section, and see if that solves the problem. If the result is the same
with different values for border, feel free to proceed immediately to the renormalisation in section 4.13.

4.10 Multiprecision

So your program either NaNed or returns border-dependent values. The solution for this problem is to
use internal variable types which resolve more digits than the 15 present in double. The simplest way
of doing that is to only change the command used to compile the executables in section 4.7 and add
BOOST=1 to the make command. The files you then generate use multiprecision variables and should not
be affected anymore. However, they will be significantly slower than “standard” files, so it is advisable
to lower the requested accuracy in the epsrel variables.

In some cases the programs are unacceptably slow, or the accuracy cannot be lowered significantly. In
this case there is not much that can be done, but we can tease an additional factor of ∼ 2 in run time
out of the code, by using a different implementation of the multiprecision variables.

The standard implementation is provided by the boost library, which is a header-only library and there-
fore does not need to be compiled. The alternative implementations are provided by the GMP[4] and
MPFR[5] libraries, which do need to be compiled. To do that, we ascend to the SoftSERVE main directory,
and call the configurations script with the appropriate flag:

./configure --MPFR

This compiles the GMP and MPFR libraries, and writes the output of their configuration and compilation
steps to the GMPcompilation.log and MPFRcompilation.log files. Once the configuration script has
terminated, check these for potential errors.

Assuming GMP and MPFR have compiled correctly, you now need to choose the multiprecision provider
you want to use. The standard is still the boost implementation, even if GMP and MPFR are now
compiled. To change this open the problematic observable’s Input Parameters.h13, and look for the
line

12See section 4.6
13Note that this means the setting is tied to one observable. This is not a global change on the level of the full framework.
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#define BOOST_H

As per the comment preceding it we know what we want to do, namely we change it to

#define GMP_H

if we want to use the GMP library, or

#define MPFR_H

for the MPFR implementation.

If you now call the makefile with the BOOST=1 setting, the executables are compiled using boost-, GMP-
or MPFR-provided multiprecision variables, according to what you #defined

The executables compiled using make without setting BOOST=1 are unaffected by all of this.

Now compute the bare soft functions again using the newly compiled executables and perform the consis-
tency check again. If it still fails, something else is going on, so please check the troubleshooting chapter 5
in this case.

4.11 Tidying up and getting the full result

Once you are convinced that the result is correct and the integrations are finished, you find the results in
the Result observable XX.txt files, where observable is replaced with the value of the observable

string in the input files, and XX is the executable in question, i.e. 1P, CA and NF.

To save you the trouble of having to perform the sum of CA and the real-virtual correction from 1P for the
full CFCA structure — and in particular to save you the trouble of having to combine the error estimates
—, we provide a script to do that for you. Once all result files for a given observable are in, you can call

./sftsrvresNAE -o observable -d subdir

where observable is the value of the observable string in the input files, surrounded by quotes if it
contains blanks, and subdir is the name of the subdirectory of the Executables folder that contains
the three individual results files. The latter argument is optional and can be omitted, if the files are in
Executables directly. ./sftsrvresNAE -h. or ./sftsrvresNAE --help provides help and an example.

The ./execsftsrvNAE script calls this script automatically, and the final result is written to the file
Result observable Full.txt, again with observable specified in the input.

4.12 Fourier-adjusting the results (Fourier space functions only)

If you’re wondering if you have to follow this section’s instructions, you very likely don’t. In this
case, feel free to skip ahead to the renormalisation section.

If you have read the relevant appendix in the main paper and are calculating soft functions involving
imaginary measurement functions, this is for you.
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In an appendix of the main paper we outline how we can compute the real part of Fourier space soft func-
tions using SoftSERVE, by running it on the absolute value of the measurement function, and subsequently

multiplying the result with cos (2ε+α)π
2 , cos (4ε+α)π

2 , or cos(2ε+ α)π, for 1-loop, 2-loop interference, and
2-loop 2-particle results, respectively14.

To spare the user the effort of having to do this multiplication manually we provide a script to do it, in-
stead. The ./fourierconvert script requires the presence of the results files for the SoftSERVE run men-
tioned above (either combined or a full set of individual results files), and is called via ./fourierconvert

- o observable -d subdir, with observable the name of the observable, as provided to the SoftSERVE
input (and as appearing in the names of the results files, mainly), and subdir the optional name of the
subdirectory of the Executables folder, in which the results files reside.

The script performs the required linear combinations of existing regulator orders with the relevant powers
of π coefficients (the cosine expanded), and calculates the modified error bars via the sum of squares. It
then writes the adjusted results and error bars to a file mirroring the structure of SoftSERVE results files
for an observable called Fourier observable, where observable was the name of the original input.

So for an observable called whatevs renormalising multiplicatively in Fourier space, with (imaginary)
measurement function iF , the SoftSERVE sequence would be

1. Write input files using the measurement function |F |

2. Compile the binaries

3. Call ./execsftsrv -o whatevs to run the integrations

4. Call ./fourierconvert -o whatevs to adjust the results and account for the cosine factors

5. Call ./laprenorm -o Fourier whatevs to renormalise

4.13 Renormalising

Having derived the full bare soft function we now want to renormalise. In principle we should now undo
the transformations we performed in section 4.1 to arrive at the soft function in its original space, and
then renormalise there. We leave this task for complicated transformations to the user.

However, there are many observables renormalising multiplicatively in the space in which the SoftSERVE

calculation occurs (usually Laplace or Fourier space), for which we have scripted the renormalisation
procedure. With “multiplicatively” we mean that the bare and renormalised soft functions are related
by multiplication with a Z-factor, rather than a convolution with it.

Assuming we have a full set of result files for the individual executables in section 4.8, or a combined result
file generated via script 4.11, we can call the ./laprenormNAE script to renormalise such observables.

The script uses the syntax ./laprenormNAE -o observable -d subdirectory -n nvalue for the SCET-
1 case, or ./laprenormNAE -o observable -d subdirectory for the SCET-2 case, and extract the
anomalous dimensions and matching corrections (SCET-1), or anomaly exponents (SCET-2) following
the conventions used in [1], especially the “Renormalisation” and “Numerical implementation” sections.

14With α = 0 in the SCET-1 case, of course.
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observable must be replaced with the string in the observable variable of the input files, and the
subdirectory and nvalue options are optional, specifying a subfolder of the Executables folder which
contains the result files on which the script operates, and the value of the parameter n, respectively. The
-n option only exists in case the script cannot read the value from the results files, in which case you’ll
be asked to provide it manually via this option. If either observable or subdirectory contain blank
spaces, they must be enclosed by single or double quotes, or escaped using backslashes.

In both cases the renormalisation script requires either a set of all three individual result files, or one
combined result file as output by the programs and scripts described in the sections above.

All scripts come with the flags --help and -h, which list their features again.

Examples for observables renormalising in calculation space are (Laplace space) event shapes like C-
Parameter or Angularities, as well as observables like Drell-Yan production at threshold, or weak boson
production at large transverse momentum, and (Fourier space) transverse momentum resummation.
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Chapter 5

Troubleshooting and tips and tricks

This list will be periodically updated as more ‘trouble to be shot’ is reported to the developers.

5.1 General grievances

• GMP and MPFR will fail to compile if the absolute SoftSERVE directory path contains spaces
(programs using autotools generally have this problem).

• Functions exhibiting zeroes or divregences in the bulk of the integration region (e.g. pT resum-
mation) will yield results at reduced accuracy. This is because the zero/divergence generates a
logarithmic divergence in the numerical integrand, which introduces instabilities. Such observables
can also produce NaN as an integration result if the accuracy goal is chosen too ambitiously. This
is essentially the numerical integrator giving up.

• Results for the higher reguator orders tend to appear with an insecure error estimate (“Probability
of incorrect error estimate: 1”). This warning tends to be overly paranoid, mainly because these
results consist of multiple terms originating from multiple integrations that are added up for the
final result. SoftSERVE estimates the probability that the final result has incorrect error bars as the
probability that at least one contributing intermediate result has incorrect error bars, which is the
most conservative way to estimate this. Increasing the accuracy can get rid of this warning, but in
many cases it can be ignored, if there are no other warning signs (like extensive refining required in
the main integration part of the numerical integration, as seen by the appearance of “Split” in the
log files, which indicates a complicated structure of the integrand not resolved by the partitioning
stage), as the error bars of lower dimensional integrations tend to be very conservative (For known
literature results the error bars tend to overestimate the actual deviation by up to two orders of
magnitude) and partially make up for the higher dimensional ones.

• Renormalising a Fourier space observable using the ./laprenorm script still mentions “Laplace
space renormalised [. . . ]”. This can be ignored, the script was written for Laplace space, it just can
be used for Fourier space by sheer accident.
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5.2 Cryptic compilation and run time error messages and their
meaning

• Cuba 4.2 throws up compiler warnings (can be found in the logfile) warning that vanilla C does
not like floating point variables in some places, that some sources are deprecated, and that some
libraries are built in deterministic mode. These are not a problem, the libraries compile just fine.

5.3 Tips and tricks

• Executables for machines other than the one used to compile them can be produced by statically
linking against the libraries. To do so set CXXFLAGS=-static during the make call.

• The number of cores the Cuba library uses is dynamically determined by the number of idle cores.
If you want to force Cuba to use a fixed number of cores, set the environment variable CUBACORES

to however many cores you want to use.
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Chapter 6

License and contact details

This program uses parts of the boost, and GMP and MPFR libraries, which are released under the Boost
Software License, dual Lesser GNU Public Licence v3 and GPLv2, and LGPLv3, respectively.

We therefore release SoftSERVE under the terms of the GPLv3. Its full text can be found in the COPYING

file in the SoftSERVE main directory.

The developers of SoftSERVE are Guido Bell, Rudi Rahn and Jim Talbert. You can contact us at
softserve@projects.hepforge.org. Emails sent to this address are forwarded to each of us.
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Appendix A

Endpoint suppression

Here we look at some transformations that can improve the convergence rate of the numerical integration,
and simplify the behaviour at the boundaries of the integration region.

All of these transformations and substitutions are handled internally by the program and are mostly
invisible to the user. However, in some cases knowledge of internal mechanisms is important and influences
how the user should operate. We therefore explain these transformations here.

A.1 Non-critical boundaries

The problem we try to solve appears due to the presence of structures like [t(1 − t)]−
1
2−ε from the

angular parametrisation and b−2ε from the regularised phase space measure1. We have to expand to
subleading orders in ε, which means that we find square root and logarithmic divergences in the integrand.
These are integrable divergences, but they potentially pose a problem for a numerical integration, which
samples points in the integration region and therefore should ideally not have to sample the vicinity of
an unbounded peak.

Moreover, the presence of square root divergences is incompatible with numerical integration routines
that rely on variance reduction techniques, as Divonne and the Cuba library in general do. This is due to
the fact a numerical integrator essentially computes an estimate for the mean of the integrand function
probabilistically, and uses that the variance of this estimate (which serves as a good error estimate) is
determined by the variance of the integrand function and the sample size. The variance of the integrand
function is usually not known, but can be estimated from the sample variance.

The problem is now that for square root divergent integrand functions the variance of the integrand
is proportional to

∫
dx f(x)2 ∼

∫
dx 1

x , which is infinite. The sample variance on the other hand is
always finite. So an adaptive integration technique which seeks to reduce the variance to reduce the
error estimates and to improve the integration precision will fail, because it operates under the wrong
assumption that the variance of the integrand function is finite2.

1The latter appears only in the CFTfnf structure, the former appears in all cases.
2As a side note: The Vegas algorithm is less susceptible to this problem, but Divonne is very sensitive to it.
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Fortunately we can solve this problem by creatively substituting: We substitute for purely logarithmic
divergences at 0:∫ 1

0

db b−2εX(b) =

∫ 1

0

dc2 c−4εX(c2) = 2

∫ 1

0

dc c1−4εX(c2) ≈ 2

∫ 1

0

dc X(c2)(c−4ε c ln c+O(ε2)), (A.1)

where we take X to be a finite function containing all other factors in our problem, and have made
explicit that the logarithmic divergences that appear in the regulator expansion are now suppressed and
of the form c lnn c.

We can extend this to square root divergences (here at v=0) by substituting to higher powers:∫ 1

0

dv v−
1
2−εX(v) =

∫ 1

0

dw4 w−2−4εX(w4) = 4

∫ 1

0

dw w1−4εX(w4) ≈ 4

∫ 1

0

dw X(w4)(w−4εw lnw+. . .

(A.2)

Finally, we can even deal with divergences at 0 and 1, by substituting

t = 1− (1− si)j (A.3)

This scales as jsi for small s, and i(1 − s)j for small 1 − s, and can therefore suppress appropriate
divergences at both ends. As an example, if there is a logarithmic divergence at 0 and a square root
divergence at 1, we’d choose i = 2 and j = 4, for square root divergences at both ends we’d use i = j = 4.

The integrand functions we use are full of such divergences, we therefore suppress most limits that are
not associated with a divergence.

A.2 Consequences for the measurement function

The endpoint suppression has interesting consequences for the measurement function.

As can be found in [1], the measurement functions F only appear as F 4ε in the integrand, which means
that at higher orders in ε they contribute at best integrable logarithmic divergences. If now such a
zero/divergence for F coincides with a suppressed limit, we never have to worry about the divergence,
and we never have to worry about lnF = ln 0 not being defined: The logarithm is suppressed and of the
form 0 ln 0. In all those cases we can therefore include in the input C++ files an if-clause which sets the
measurement function to any positive number other than zero.

This is the reasoning behind many of the clauses in the template observables: If the observable vanishes
at the combination a = 0, b =

√
e π, we do not have to worry about the value for b in the combined limit,

as a = 0 is always suppressed.

In table A.1 we list all the limits which are suppressed, and some which are not suppressed. For the
typical user, the measurement function will vanish or diverge in some limits. If the limit in which it is
zero/divergent is one of the suppressed limits above, the measurement function at the zero/divergence3

can be reset to a harmless value without changing the integral at all.

Critical limits on their own can never lead to a vanishing or divergent measurement function, based on
infrared and collinear safety, but they have their own way of creating trouble. We therefore list them
and employ a special suppression technique for them as well, as will be explained in section A.3.

3which SoftSERVE would complain about by throwing up error messages
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Limit divergent suppressed

b→ 0
logarithmic (CFTfnf ) yes

critical (CFCA) yes
b→ 1 no, finite no
a→ 0 logarithmic yes
a→ 1 critical yes
y → 0 critical yes
y → 1 no, finite no
t→ 0 square root yes
t→ 1 critical yes
cl → −1 square root yes
cl → 1 square root yes

ck → −1
square root (t5 6= 0) yes

critical (t5 = 0) yes

ck → 1
square root (t5 6= 0) yes

critical (t5 = 0) yes

Table A.1: In this table we lay out the endpoint suppression as implemented in the correlated emission case. The
mechanism for the suppression of logarithmic and root divergences was explained in the preceding
paragraphs, the suppression mechanism for critical limits will be explained in the next section.

So what about zeroes/divergences which are not suppressed, because they are e.g. inside the bulk on
the integration region? In these cases the measurement function can be set to a harmless value based
on the reasoning that for a logarithmic divergence at x0 the contribution of the interval [x0 − δ, x0 + δ]
to the full integral vanishes as δ → 0. We can therefore argue that even in these cases, setting the
measurement function to a non-zero value at the critical point should not change the integral estimate,
as it is determined by the entire peak, and not just the immediate neighbourhood of the divergence.
In practice, the mere existence of the peak changes the way the numerical integrator works, and yields
results that are less precise; The integrator essentially tries to sample a divergence using finitely many
points. This leads to a reduced numerical accuracy and instabilities if the desired accuracy is set too
ambitiously.

A.3 Critical limits

One reason we suppressed the endpoints was so that the integrand function, including all numerator,
Jacobian and other functions, tends to zero at the integration boundaries, to avoid potential boundary
divergences from contributing and screwing up the numerical integration via infinite variance or other
divergence effects.

Unfortunately, the presence of plus-distributions complicates things, so let’s recap what a plus-distribution
does:

In our calculation the plus distributions appear (here for a fictitious variable x) in the combination

[x−1+nε]+R(x) ≈ R(x)−R(0)

x
+ nε

lnx

x
[R(x)−R(0)] +O(ε2), (A.4)

23



where R(x) contains, in our case, numerator and measurement functions, Jacobians, etc., and is in general
ε-dependent, which we shall ignore in this discussion.

Near x = 0, we can see the problem if we expand

[x−1+nε]+R(x) ≈ R(0) + xR′(0) +O(x2)−R(0)

x
+ nε

lnx

x
[R(0) + xR′(0) +O(x2)−R(0)] +O(ε2)

= R′(0) + nε ln(x)R′(0) +O(x, ε2).

(A.5)

We see that the plus-distribution gets rid of the x−1 divergence by throwing away the constant term
in the function that multiplies it, enabling a cancellation. The integrand function then has a surviving
logarithmic divergence at x = 0, which is integrable and a nuisance, from our point of view. Worse, if
R(x) doesn’t have such a nice expansion, but expands as e.g. R(x) ≈ r0 + r1

√
x +O(x), we’d find

[x−1+nε]+R(x) ≈ r0 + r1
√
x +O(x)− r0

x
+ nε

lnx

x
[r0 + r1

√
x +O(x)− r0] +O(ε2)

=
r1√
x

+ nεr1
lnx√
x

+O(x0, ε2),

(A.6)

which has a square root divergence, our nemesis when it comes to numerical integration.

Fortunately, the substitutions we used to suppress the integrand at the endpoints also work here. If the
function R expands as R(x) ≈ r0 + r1x

m + o(xm), we can substitute x = y
2
m , and find

∫ 1

0

dx [x−1+nε]+R(x) =

∫ 1

0

dy
2
m [y−

2
m +n 2

m ε]+R(y
2
m ) =

2

m

∫ 1

0

dy [y−1+n 2
m ε]+R(y

2
m )

=
2

m

∫ 1

0

dy
R(y

2
m )−R(0)

y
+

2nε

m

ln y

y
[R(y

2
m )−R(0)]

=
2

m

∫ 1

0

dy
r0 + r1(y

2
m )m + o((y

2
m )m)− r0

y
+

2nε

m

ln y

y
[R(y

2
m )−R(0)]

=
2

m

∫ 1

0

dy r1y + o(y) +
2nε

m

ln y

y
[r1y

2 + o(y2)] +O(ε2)

=
2

m

∫ 1

0

dy r1 y +
2nε

m
r1 y ln y + o(y, ε),

(A.7)

which is suppressed at y = 0.

A careful analysis of the integrand functions shows that the leading variable dependence in the function
R is set — in the actual real world case of our integrand function — by the measurement functions FX ,
and that we therefore need to make the parameter m observable dependent. Infrared and collinear safety
allow us to determine how the observable scales in most of the critical variables, except for one: The
rapidity type variables, i.e. y in the correlated emission case.

We therefore extract m from the functions FX , unless this is not possible or yields non-sensical results,
in which case we use m = 1.
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Appendix B

Computing parametrisation

In this chapter we list — for completeness’ sake — the master formulae in the actual parametrisation
used by the program. This form arises after all relevant endpoints are suppressed, as detailed in the
previous chapter (following a reparametrisation getting rid of an overlapping divergence in the correlated
emission case).

B.1 Correlated emission case

In the correlated emission case we first reparametrise to get rid of the overlapping collinear divergence
at (a, t) = (1, 0). To do this we introduce new variables u and v via

a = 1− u(1− v) t =
u2v

1− u(1− v)
. (B.1)

This leads to a critical divergence at u = 0, the new form of the collinear divergence, and square root
divergences at u = 1 and v = 0. Having solved the overlapping divergence we reparametrise to suppress
the square root and logarithmic divergences for the relevant variables listed in the previous chapter. We
therefore introduce:

u = 1− (1− z2)4 v = w4

b = c2 tl = 1− (1− s4
l )

4

y = xµ t5 = s2
5

(B.2)

The exponent µ is related to the parameter m and adjusted to suppress the relevant critical limit. It is
set to µ = 2

m if m ∈]0, 1], and µ = 2 otherwise.

Using these reparametrisations, and splitting the CFCA contribution into a part that matches CFTFnf ’s
divergence structure — called Pseudo-nf or PNF — and the rest — called Rest-CA or RCA — we
find the master formulae for SoftSERVE below. For SoftSERVE the monomials marked in blue contribute
regulator poles, which are made explicit by introducing plus-distributions. Following this subtraction
the complete expressions are expanded in the regulators and can be used for numerical integration. For
brevity the argument dependence of the measurement functions FX has been suppressed, and the labels
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i = 1, 2 on FXi correspond to the two distinct substitutions for the angular variable tk in terms of the
angular variables t, tl and t5 introduced in [1] (or their resubstituted versions z, w, sl and s5 as introduced
above).

Snf
=

∫ 1

0

dz dcdw dxds5 dsl
217−4εmεΓ[−2α− 4ε]

e2εγeπ
3
2 Γ[ 1

2 − ε]Γ[1− ε]
z−1−4ε x−1+mα+2nmε s−1−2ε

5

· 1

(1 + w4)3
c1−2α−4εw1−4εs1−4ε

l

(
F 4ε+2α
A1 + F 4ε+2α

A2 + F 4ε+2α
B1 + F 4ε+2α

B2

)
(2− s2

5)−1−ε

· (1− z2)1−4ε(1− s4
l )

1−4ε
(
(2− s4

l )(2− 2s4
l + s8

l )
)− 1

2−ε ((2− z2)(2− 2z2 + z4)
)−1−2ε

·
(
1 + w4z2(2− z2)(2− 2z2 + z4)

)− 1
2−ε ((1− z2)4 + w4z2(2− z2)(2− 2z2 + z4)

)1−α
·
(
1 + c2

(
(1− z2)4 + w4z2(2− z2)(2− 2z2 + z4)

))−2+2α+2ε

·
(
c2 + (1− z2)4 + w4z2(2− z2)(2− 2z2 + z4)

)−2+2ε
[
− 4w4

(
c2 + w4z2

(
2− z2

)
·
(
z4 − 2z2 + 2

)
+
(

1− z2
)4
)(

1 + c2
(
w4z2

(
2− z2

)(
z4 − 2z2 + 2

)
+
(
1− z2

)4))
−
(
1− c2

)2(
1− w4

)2(
w4z2

(
2− z2

)(
z4 − 2z2 + 2

)
+
(
1− z2

)4)]

SPNF =

∫ 1

0

dz dcdw dx ds5 dsl
(ε− 1)24(4−ε)mεΓ[−2α− 4ε]

e2εγeπ
3
2 Γ[ 1

2 − ε]Γ[1− ε]
z−1−4ε x−1+mα+2nmε s−1−2ε

5

· 1

(1 + w4)3
c3−2α−4εw1−4εs1−4ε

l

(
F 4ε+2α
A1 + F 4ε+2α

A2 + F 4ε+2α
B1 + F 4ε+2α

B2

)
(2− s2

5)−1−ε

· (1− z2)1−4ε(1− s4
l )

1−4ε
(
(2− s4

l )(2− 2s4
l + s8

l )
)− 1

2−ε ((2− z2)(2− 2z2 + z4)
)−1−2ε

·
(
1 + w4z2(2− z2)(2− 2z2 + z4)

)− 1
2−ε ((1− z2)4 + w4z2(2− z2)(2− 2z2 + z4)

)1−α
·
(
1 + c2

(
(1− z2)4 + w4z2(2− z2)(2− 2z2 + z4)

))−2+2α+2ε

·
(
c2 + (1− z2)4 + w4z2(2− z2)(2− 2z2 + z4)

)−2+2ε

·
[
2 + w4z2

(
2− z2

) (
2− 2z2 + z4

)
− z2

(
2− z2

) (
2− 2z2 + z4

) ]2
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SRCA =

∫ 1

0

dz dcdw dx ds5 dsl
24(4−ε)mεΓ[−2α− 4ε]

e2εγeπ
3
2 Γ[ 1

2 − ε]Γ[1− ε]
z−1−4ε x−1+mα+2nmε s−1−2ε

5

· c−1−2α−4ε 1

(1 + w4)
w1−4εs1−4ε

l

(
F 4ε+2α
A1 + F 4ε+2α

A2 + F 4ε+2α
B1 + F 4ε+2α

B2

)
(2− s2

5)−1−ε

· (1− z2)1−4ε(1− s4
l )

1−4ε
(
(2− s4

l )(2− 2s4
l + s8

l )
)− 1

2−ε ((2− z2)(2− 2z2 + z4)
)−1−2ε

·
(
1 + w4z2(2− z2)(2− 2z2 + z4)

)− 1
2−ε ((1− z2)4 + w4z2(2− z2)(2− 2z2 + z4)

)−α
·
(
1 + c2

(
(1− z2)4 + w4z2(2− z2)(2− 2z2 + z4)

))−1+2α+2ε

·
(
c2 + (1− z2)4 + w4z2(2− z2)(2− 2z2 + z4)

)−1+2ε

·

[
2c2
(
w4z2

(
2− z2

)(
z4 − 2z2 + 2

)
+
(

1− z2
)4
)

−
(

1− 2w4z4(2− z2)2(2− 2z2 + z4)2

w4z2(2− z2)(2− 2z2 + z4) + (1− z2)4

)(
c2

+ 2
(

1 + c4
)(
w4z2

(
2− z2

)(
z4 − 2z2 + 2

)
+
(
1− z2

)4)
+ c2

(
w4z2

(
2− z2

)(
2− 2z2 + z4

)
+
(
1− z2

)4)2

+ c2

)]
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Appendix C

Multiprecision

C.1 The problem, explained

To understand the necessity for multiprecision variables, it is best to study a concrete example. Take a
measurement function which contains a structure like

F (x) =

√
1

x
+

2∆√
x
−
√

1

x
(C.1)

where x represents any of the variables that come associated with a plus-distribution, and ∆ is some
x-independent quantity that may well depend on other variables. For positive ∆ this function is finite
and positive in the region x ∈ [0, 1], and has a nontrivial limit as x→ 0: F (0) = ∆.

The problem now arises because for small but non-zero x, the two square roots in the difference can
become arbitrarily large, but their difference will hover around ∆. In other words, the smaller we choose
x, the further down in decimal places is the first digit at which the roots’ values will differ. In the above
example, for ∆ = 1, x = 10−10, the result is

F (10−10) ≈ (1.0000000001− 1)× 1010 ≈ 1 (C.2)

This is at odds with the way floating point calculations are performed in any computer program, because
for a computer there is a direct relation between the number of digits that are stored for a variable, and
the memory that is required to store them. C++ double type variables store typically ≈ 15− 16 digits1,
and are blind to all digits further down the decimal form. In the above example, if x ≈ 10−15 or smaller,
a computer program would calculate the value of the two square roots and not see that they are different,
because the difference occurs only at a digit that is rounded away in double type variables. The program
would therefore conclude that F (10−15) = 0, rather than F (10−15) ≈ ∆.

The reason this is a large problem for us, rather than just a small rounding error, becomes clear when
plus-distributions come into the fray.

1The ambiguity of 15 vs. 16 arises because a computer stores binary numbers, not decimal numbers.
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If we apply a
[

1
x

]
+

plus-distribution to F , we find a structure like

[
1

x

]
+

lnF (x) =
ln F (x)

F (0)

x
(C.3)

in the integrand, because F appears only as F 4ε, which expands to logarithms. F (0) is a non-trivial
limit. If we follow the SoftSERVE procedures we will have explicitly included an if-clause in the input
files that makes sure that F (0) is evaluated correctly. But F (x 6= 0) is evaluated using the internal C++
floating point math libraries, and can therefore be subject to the rounding errors we showed above for F .

This is now a two-faceted problem. First, for an F as demonstrated above the program sees that the
integrand can contain the schematic expression

[
1

x

]
+

lnF (x)

∣∣∣∣
x=10−15

= 1015 · ln F (10−15)

F (0)
= 1015 · ln 0

∆
→ NaN, (C.4)

where the logarithm cannot be evaluated, because the program suffered from rounding problems in
F (10−15). If this occurs, the numerical integrator would return NaN as the result of the integration.

But second, and more dangerous, is if we have a measurement function F ′(x) = F (x)+c, for some constant
c, then a computer would return a wrong (rather than a nonsensical) result, because the computer would
calculate [

1

x

]
+

lnF ′(x)

∣∣∣∣
10−15

= 1015 · ln 0 + c

∆ + c
= 1015 ln

c

c+ ∆
, (C.5)

rather than the correct result of[
1

x

]
+

lnF ′(x)

∣∣∣∣
10−15

= 1015 · ln ∆ + δ + c

∆ + c
≈ −1015 ln 1 ≈ 0, (C.6)

where δ stands in for the small difference between F (0) and F (10−15).

This problem can occur for any measurement function that relies on large cancellations between numbers,
and it is not just a theoretical problem; Transverse Thrust is an observable that shows exactly this
behaviour.

C.2 The diagnosis

So what can we do to solve the problem?

First we need to have a method of diagnosing the critical feature, to see if a given observable potentially
suffers from it. For this we recall that Divonne delineates an exclusion zone at the integration boundaries
via the border setting, in which it does not evaluate the integrand directly. This helps us, because
it means that below a certain threshold no variable values will be plugged into any functions. Still,
we do not know at which point the rounding errors appear, as this is observable dependent. For some
observables y ∼ 10−5 may trigger them already, for others they may only appear below y ∼ 10−20.
Also recall that the rounding errors do not just cause the integrand to exhibit NaN occurrences as the
rounding artefacts, but they can also just change its value. Both these artefacts will upset the continuity
of the integrand function, and that means that changing the border variable will cause a change in the
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numerical integration result, because the extrapolation into the boundary region relies on the continuity
of the integrand function.

To check for the presence of rounding errors, we therefore perform the calculation with different values
for the border variable, and if the final result changes we very likely are sensitive to rounding errors, and
have to use the multiprecision solution outlined below.

C.3 The solution

The solution to rounding errors due to not resolving enough digits is to resolve more digits.

We can do this by using non-standard datatypes which store more than the C++ standard double type’s
15 digits. To keep things simple we define a new datatype decimal, which is typedef’d to double if the
usual precision suffices, but which is internally set to a larger datatype, if needed.

To provide the backbone for multiprecision variables, we implement three options:

• The boost library[3] provides the cpp dec float 100 datatype, which is implemented via header-
only libraries.

• The GMP library[4] library provides the mpf float 100 datatype, which requires the GMP library
to be compiled before use.

• The MPFR library[5] library provides the static mpfr float 100 datatype, which requires the GMP
and MPFR libraries to be compiled before use.

All of these provide 100 decimal digit precision, and are ordered roughly in performance: boost is
slowest but easiest to implement, while GMP and MPFR are fastest but typically increase memory use (MPFR
in particular).

Because boost does not need to be compiled, we use it as the default — how to change the multiprecision
backbone to GMP or MPFR is explained in section 4.10.

Depending on which backbone is chosen, the decimal datatype is typedef’d as an alias of the relevant
one of the three choices itemised above.
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Appendix D

Program structure

Having explained the methods and strategies used for the calculation, this chapter serves as the docu-
mentation of the implementation, i.e. the layout of the code.

This is to a large part dictated by the structure of the calculation itself. The most important of the
features of the calculation is that there is a correlation between the dimensionality of the numerical
integration and the regulator orders for the first few orders. In detail:

Any master equation in [1] or appendix B (taking SCET-1 without loss of generalisation) can be split
schematically into three structures, viz.

S = P (ε)︸︷︷︸
constant

prefactors

(
Πi

∫
dxi

)
X({xi}; ε)︸ ︷︷ ︸

finite
functions

φ (F ({xi}), xi; ε)︸ ︷︷ ︸
measurement function

and divergences

(D.1)

We have split off constant, i.e. integration variable independent, prefactors like πε or Γ(1 − ε) from the
function to be integrated, and we’ve collected non-divergent, but regulator dependent functions into the
structure X. These mainly are relics of the matrix element numerators, Jacobians and the likes. Finally,
φ contains the measurement functions F , as well as all divergent monomials (like y−1+nε) before the
subtraction.

Two features are now important:

• First, only φ contains regulator poles: P and X are finite as ε → 0 (SCET-1) or α → 0, ε → 0
(SCET-2). In the SCET-2 case there may be terms like α

ε , but these only exchange the type of the
regulator poles. They do not add a net divergence.

• The poles in φ only arise from the δ-part in the subtraction x−1+nε = δ(x)
nε +

[
1
x

]
+

+nε
[

ln x
x

]
+

+ . . .

We can draw several lessons from this.
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D.1 Prefactors

First, note that a given regulator order of the integrand structure
∫
Xφ contributes to multiple regulator

orders of the final result for S, because the prefactor can add any positive power of the regulators. As
an example, the lowest regulator order of

∫
Xφ in the CA colour structure for an SCET-1 observable has

regulator power ε−4. This expression, multiplied with the lowest (ε0) order of the prefactor P , appears
in the ε−4 order of the final result soft function. It also appears in the ε−3 coefficient of the final result
when multiplied with the ε1 order of the prefactor, in the ε−2 coefficient when multiplied with the ε2

order of the prefactor, and so forth.

In other words, a naive expansion in regulator powers for the full soft function master formula (including
prefactors) yields expressions for the higher order terms that contain all the lower order expressions, just
with different constants multiplying individual functions.

To reduce the number of individual function evaluations the computer has to perform, we therefore split
the prefactors from the variable dependent functions, expand the latter and numerically integrate them
alone, and then plug the different regulator orders of the numerical results back together with the correct
prefactor orders to get the final result coefficients.

D.2 Poles and Deltas

The second point of order concerns the origin of the poles. As each pole reliably comes with a Dirac delta,
this means that leading poles arise from integrations with reduced dimensionality of the integration.

Consider as an example again the ε−4 order of the CA colour structure for a SCET-1 observable, which

is the leading order. The four inverse regulator powers arise in the form Πi

(
δ(xi)
ηiε

)
from the subtraction,

where the xi are the relevant integration variables and ηi are constants that differ between the xi.

To get the result, we therefore do not need to perform the full six-dimensional integral, it suffices to set the
four variables that come with a delta to zero analytically, and only perform the surviving two-dimensional
integral numerically.

At higher orders this induces a hierarchy. Take the first subleading order of the same colour structure.
To get to the ε−3 pole we can either start with all four deltas from the subtraction, and cancel one of
them with an ε1 factor from X or the measurement function F (which appears as F 4ε in φ), or we can
take only three deltas and use the lowest order (ε0) for all other remaining factors from X and F .

In the former case, we only need to perform a 2-dimensional integration, in the latter case we need to
perform only 3-dimensional integrations, albeit with terms depending on different sets of three integration
variables.1

We therefore conclude that for the leading regulator orders the number of integrations depends on the
regulator power. In particular, we find that the number of integration dimensions is given by table D.1
The CFTfnf structure only has three divergence monomials, which account for the difference.

One last piece of fortune reduces the number of integration dimensions further. Note that the first finite
order (ε0) could arise from the terms in which no delta is present, and all other factors contribute at

1There are four different sets of three integration variables, as there are four possibilities of choosing one out of four
subtractions. For that one subtraction we don’t use the delta, but the plus-distribution.
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CFCA and C2
F

regulator powers integration dimension

-4 (leading) 2
-3 3
-2 4
-1 5
0 6

CFTfnf

regulator powers integration dimension

-3 (leading) 3
-2 4
-1 5
0 6

Table D.1: Apparent number of integration dimensions for CFCA and C2
F colour structures (left) and CFTfnf

structure (right).

CFCA and C2
F

regulator powers integration dimension

-4 (leading) 2
-3 3
-2 4
-1 5
0 5

CFTfnf

regulator powers integration dimension

-3 (leading) 3
-2 4
-1 5
0 5

Table D.2: Actual number of integration dimensions for CFCA and C2
F colour structures (left) and CFTfnf

structure (right).

lowest order. In this case it turns out that the relevant expressions from X are independent of one of
the integration variables — y in the correlated emission case, b for uncorrelated — which only appears
in the measurement function. However, the measurement function appears only as F 4ε , whose leading
order is 1, which obviously is also independent of y and b. We therefore find that the 6-dimensional

integral evaluates to zero, because it involves the integral over a plus-distribution
[

1
y

]
+

, multiplied with

only y-independent functions (b in place of y for uncorrelated emissions).

The number of dimensions of the integrals actually required is therefore listed in table D.2.

The case is virtually identical the SCET-2 case, with one minor change:

For SCET-2 observables the appearance of the second regulator, and in particular of terms like α
ε , may

cause trouble. In practice, careful analysis shows that apart from inflating the number of appearing terms
in various expressions, this changes nothing. The dimensionality of the integration is set by the sum of
the powers of the two regulators.

D.3 Source files

With what we’ve learned in the preceding section, and as a primer for the next, we can now list the
source files and why they appear where and how they do.

First, note that most source files have an associated header file. The only exceptions are Master.cpp,
and the input source files. The Master.cpp file only contains the main{} function, the input files are
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headed by Auxiliaries.h in the Sources subfolder.2

All branches of the program have a certain set of source files, namely

Master.cpp contains the main() function. It is found in the Sources subfolder, and starts sequen-
tial child processes that perform the numerical integration, one for each integration
domain dimensionality. Once an integrator run has finished, these results are combined
with the constant prefactors to calculate the soft function Laurent series coefficients.

Prefactors.cpp contains the prefactors, which multiply the results of the numerical integration in the
Laurent coefficients of the final result soft function. It is also hidden out of view, in
the Sources folder.

XFactor.cpp resides in Sources as well, and contains the functions we grouped as X in the dis-
cussion above, in their expansion in regulator orders as required by the numerical
integration. These files act as libraries for the next set of files.

“Int” files in the Sources folder adhere to a naming scheme. As an example, the 3IntAM1.cpp file
contains the εiα−1 orders of the functions that appear in the 3-dimensional Integration,
for all relevant ε orders i. The α orders are specified by AM1 and AM2, standing in for
Alpha to the Minus 1 or Alpha to the Minus 2. AM0 is omitted wherever it appears.

With the exception of the 2Int files (or 3Int for the Tfnf structure), all of these files
contain multiple functions at a given regulator order, corresponding to the different
possible subsets of integration variables that can be formed at a given number of
integration dimensions. So the 3IntCA files contain four functions for each regulator
order, corresponding to the four possible sets of integration variables (tl, v, b), (tl, v, y),
(tl, v, t5), (tl, v, u) that span the integration domain, for example.

The Real-Virtual (RV) and 1-loop (OL) computations only have 2-dimensional integrals,
the prefix number is therefore omitted in these cases.

Auxiliaries.cpp contains auxiliary function definitions, variable transformations, and the structures
that collect the various functions that need to be integrated. The latter takes the
different functions defined in the Int files and homogenises their integration domain.

“Input” files contain all definitions that are observable specific, and integrator parameters. We’ve
already encountered those in the bulk of the manual before.

The Sources/SCETX folders contain a subfolder 1AN, short for “1-particle, CA and nf”, which contains
the files above. There are also currently irrelevant subfolders named AD, S-A, and S-B, which contain no
droids anybody might be looking for.

The 1AN folder includes (almost) multiple sets of these files, marked with CA (one part of the CFCA
structure), PNF (“Pseudo-nf”, second part of the CFCA structure, it behaves like the CFTfnf structure),
NF (CFTfnf structure), RV (“Real-Virtual”, i.e. 1-particle NNLO), OL (“One Loop”, i.e. NLO) and 1P

(“1-particle” in general).

All these files share one subfolder as there are shared source files: the Input and Auxiliaries.cpp files.

To get more familiar with the content of these files it is instructive to see them in action, so we run along
a typical program run, and explain along the way what happens.

2With the exception of the content of Input Parameters.h, of course.
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D.4 Program flow

The schematic flow is described in figure D.1, where the CFCA or C2
F structures serve as the template.

The other colour structures are similar with minor modifications.

Having defined the relevant input in the Input files and compiled the program, we call - in a typical run
- the binary for a given colour structure.

The main function then spawns a child process3 for the lowest dimensional integration: For all colour
structures except CFTfnf this is the 2-dimensional integration, CFTfnf starts at the 3-dimensional
integration

This child process sets up variables for the integration results, and calls the llDivonne function as
defined in the Cuba library to integrate all regulator orders required for any Soft function Laurent series
coefficient in parallel, to fill these variables.

To do this, Divonne uses the functions defined in the “Int” files, which in turn depend on the measurement
functions F or G and parameters n and m defined in the Input files and the X functions in XFactor.cpp.
The functions from the “Int” files are funnelled through Auxiliaries.cpp where the different integration
variable sets are aligned4

The integration then proceeds according to the parameters specified in the Input files.

Once the first integration is finished, by the arguments explained in the previous chapter, enough infor-
mation is available to compute the leading pole coefficient from the integration result and the prefactors
in Prefactors.cpp.

The 1-particle calculation terminates here, as it only needs 2-dimensional integrals. For all other colour
structures we proceed to the second integration, which has one integration variable more5. There, the
same procedure happens. Once this integration finishes, enough information is available for the first
subleading pole.

The whole process repeats until the 5-dimensional integration is finished. When this happens the program
tidies up, calculates the finite and linear regulator divergence coefficients, and terminates.

The procedures for SCET-2 are identical, except that the appearance of terms is set by the sum of the
ε and α orders. So e.g. for C2

F the ε−4α0, ε−3α−1 and ε−2α−2 pole coefficients all count as leading and
are available once the 2-dimensional integration has terminated.

3the reason for using child processes is technical and laid out in the comments in the Master.cpp files
4If e.g. multiple functions contribute to for example the 3-dimensional integration, which depend on different sets of

three integration variables, e.g. (tl, v, b), (tl, v, y), etc., Auxiliaries.cpp provides one function depending on variables
(x1, x2, x3) which is the sum of all 3-variable functions in the “Int” file.

5i.e. 4-dim for CFTfnf , 3-dim for everybody else.

35



Call
program

2-dimensional
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4-dimensional
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2IntXX.cpp 3IntXX.cpp 4IntXX.cpp 5IntXX.cpp

Input.cpp

inhomogeneous variables

homogeneous variables

inhomogeneous variables

homogeneous variables

inhomogeneous variables

homogeneous variables

inhomogeneous variables

homogeneous variables

XFactorCA.cpp,
XFactorNf.cpp,
XFactorPNf.cpp

Auxiliaries.cpp

Measurement function, value of n (SCETI) Observable indepedent stuctures (Jacobians, Numerators,...)

ε−4 coefficient ε−3 coefficient ε−2 coefficient
ε−1 coefficient,
ε0 coefficient

Result of 2D integration Result of 3D integration Result of 4D integration Result of 5D integration

Prefactors.cpp

Parameters

Figure D.1: Program flow through the program for a SCET-1 observable. The blue box marks the only files requiring user input, red boxes
represent program steps, white boxes mark the source files. Green boxes represent results. The blue arrows trace the program
flow, black arrows of the form A → B represent “Variables in A passed to B” or “Function defined in A called by B”. The chart
should be read left-to-right and top-down, and external libraries are not included.
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Appendix E

Template Observables

E.1 Preliminaries

Below we provide the derivation of the measurement functions for the various SCET-1 and SCET-2
observables included as pedagogical template examples in the SoftSERVE package.

The ultimate aim is to derive the functions FX , with placeholder index X, to be used in the SoftSERVE

program. We will use the term “measurement function” interchangeably for the F functions as well as
the full measurement exponential, the meaning is in general clear from the context.

To recap the main manual and articles:

• The initial measurement function — we call it FA— can be derived from the measurement expo-
nential using the appropriate parametrisation outlined in section 4.2, followed by stripping off some
terms, mainly leading powers in certain limits.

• The function FB arises from the measurement exponential the same way as the function indexed
A, after inverting one suitable variable, according to the symmetry considerations outlined in [1].

• The FX functions’ behaviour around y = 0 determines the parameter m. If that doesn’t work, we
use m = 1.

We run through the examples below, but it is advisable to list briefly which issues in general require
attention:

• Non-trivial limits (e.g. of the form 0
0 ) must be caught by if-clauses

• Limits in which the measurement function vanishes and/or diverges must be explicitly “defused”
by setting the measurement function equal to a constant1 at these points.

• Heaviside step functions are best implemented using if-clauses. This has the advantage that any
considerations of NaN appearances or zeroes/divergences can be confined to the regions where the
if-clause triggers, i.e. where the step functions has support.

1Setting them to 1 is computationally sensible, some terms drop out of the integrand then.
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E.2 First appearance of critical features

Many observables share intricate features. To keep this manual short, we generally do not explain in
detail how a certain issue is handled, if another observable covered in the sections before also exhibits
it. Instead, here is a table of interesting features that lists for which observable we’ve covered them in
detail.

Feature Example observable Section

Basic vanilla observable Threshold Drell-Yan E.3
Different regions A, B C-Parameter E.4
Vanishing/diverging FX C-Parameter E.4
Parameter dependence Angularities E.5
Non-trivial variable m Angularities, W/Z/H at large pT E.5 E.7
Step functions Angularities E.5
Angular dependence Gauge boson at large pT E.7
Non-standard RG equation Transverse Thrust E.8
Non-trivial limit Transverse Thrust E.8
Rounding errors Transverse Thrust E.8
Imaginary F pT resummation E.9

Table E.1: Observables illustrating the first appearances of non-trivial SoftSERVE features.

Warning!

The symmetry discussion in the main paper shows explicitly that there are four distinct integration
regions covered by the two regions A and B, each. The symmetry enforces that these give the same
result upon integration, allowing us to get away with only calculating the results in A and B, and
accounting for the others by multiplying these results by 4.

The symmetry does not enforce equality of the integrands in these mirror regions. Depending on
how you derive FB from FA or the measurement exponential, you may get different functional forms
for FB . Symmetry then states that these must give the same final result.

So do not be alarmed if there are different FB functions you can derive. Chances are they yield the
same result.
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E.3 Threshold Drell-Yan

The soft function for Threshold Drell-Yan[7] involves the measurement exponential

exp(−τω(2)(k, l)) = exp(−τ(k+ + k− + l+ + l−)), (E.1)

as derived in the initial sections of the main paper.

We can now apply the parametrisations, and read off the measurement function, as well as - in the
correlated emission case - the parameter n:

exp(−τω(2)(k, l)) = exp(−τ pT
1 + y
√
y

) (E.2)

To derive FB we need to invert one of a, b, y, which has no effect.

We conclude that for the correlated emission:

n = −1 FA = FB = 1 + y (E.3)

The leading non-constant power in y can be easily read off: FA/B = const. + O(y), so following the
manual we have m = 1.

Problematic limits

There are none, this function is well behaved in the entire integration space.

E.4 C-Parameter

The C-Parameter soft function[8] is similar to the Threshold Drell-Yan case:

S(ω) =
∑
k,l

〈0|S†S |k, l〉 〈k, l|SS† |0〉 δ(ω − k+k−
k+ + k−

− l+l−
l+ + l−

). (E.4)

Following a Laplace transform we find for the correlated emission case the measurement exponential

MCP,A = exp(−τ pT
√
y (

a

a+ b+ y(1 + ab)
+

ab

a(a+ b) + y(1 + ab)
)). (E.5)

From this we can read off

n = 1 FA =
a

a+ b+ y(1 + ab)
+

ab

a(a+ b) + y(1 + ab)
(E.6)

The function in region B is different, now, and to get it we can either invert y, a, or b2. This yields

MCP,B = exp(−τ pT
√
y (

a

a(1 + ab) + y(a+ b)
+

ab

1 + ab+ ay(a+ b)
)). (E.7)

and so

FB =
a

a(1 + ab) + y(a+ b)
+

ab

1 + ab+ ay(a+ b)
(E.8)

Expanding FX around y = 0 yields the leading non-constant power in y, again we have FX = const. +
O(y), so again we find m = 1.

2Either will do, choose the one that causes you the least amount of work.
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Problematic limits

The measurement functions in the correlated emission case vanish if a = 0. This is a lower dimensional
hypersurface and not a limit associated with a divergence/plus-distribution, and therefore acceptable.
Nevertheless the program will throw up error messages if this is not handled. We therefore include a
segment

if(a<=0.) {

FA=1.;

}

for FA and similar for FB in their sections of the Input Measurement Correlated.cpp file.

For the reasons why changing the value of the function is acceptable, please consult appendix A.

Additionally, there are overlapping non-trivial limits of the form 0
0 , e.g. in FA’s first term, at (a, b, y)→

(0, 0, 0). If C++ tried to evaluate the function there, it would encounter the expression 0
0+0+0 + . . .,

which it can’t resolve on its own. However, all of these require a→ 0, and therefore are already covered
by the if clause above.

This exhausts the list. The functions are well-behaved everywhere else.

E.5 Angularities

Angularities[9] is again of a form requiring a Laplace transform, yielding

MAng = exp(−τ ω(k, l)), (E.9)

where ω(k, l) is the definition of the angularities observable in terms of emission momenta.

This definition reads:

ω(k, l) = Θ(k+ − k−) k
1−A

2
− k

A
2

+ + Θ(k− − k+) k
1−A

2
+ k

A
2
− (E.10)

+ Θ(l+ − l−) l
1−A

2
− l

A
2

+ + Θ(l− − l+) l
1−A

2
+ l

A
2
− . (E.11)

As we can see, the angularities are parameter dependent, which must be properly declared to the program,
and assigned a value, as SoftSERVE cannot handle parametric expressions. We therefore have to add a
line to Input Common.cpp and Input Parameters.h each:

extern double AA;

in Input Parameters.h to declare the parameter and

double AA=0.5;

in Input Common.cpp to define it. We chose AA instead of A because the letter A is already in use, it is
used by one of the internal functions. For a list of parameter names to avoid, see Table 4.1.
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Plugging in the parametrisation for correlated emission, we find for region A

ωA(k, l) = pT y
1−A

2

(
Θ(
a(a+ b)

1 + ab
− y)

[
a−

A
2 (a+ b)−1+ A

2 (1 + ab)−
A
2 (a+ aAb)

]
+ Θ(y − a(a+ b)

1 + ab
)
[
a1−A

2

(
(a+ b)−1+ A

2 (1 + ab)−
A
2

+ b(a+ b)−
A
2 (1 + ab)−1+ A

2 y−1+A
)])

,

where we already used that some of the step functions will always evaluate to 0 or 1 if the variables a, b
and y are in [0, 1]. We also use that Θ(−x) = 1−Θ(x).

For region B we again invert one of y, a, or b in the full exponential, and find

ωB(k, l) = pT y
1−A

2

(
Θ

(
a(1 + ab)

a+ b
− y
) [

a−
A
2 (a+ b)−

A
2 (1 + ab)−1+ A

2 (aA + ab)
]

+ Θ

(
y − a(1 + ab)

a+ b

)[
a1−A

2

(
b(a+ b)−

A
2 (1 + ab)−1+ A

2

+ (a+ b)−1+ A
2 (1 + ab)−

A
2 y−1+A

)])
,

where now different step functions evaluate to always 0 or 1.

From this we can read off that n = 1−A, and we can easily identify the functions FA and FB . We also
brought the entire expression in a form where only ever one of the step functions is non-vanishing, which
matches an if-else combination.

Our Input Measurement Correlated.cpp file will therefore contain the code fragment

if (y <= a*(a+b)/(1+a*b) ) {

FA=pow(a+b,-1+AA/2.)*(a+pow(a,AA)*b)*(pow(a,-AA/2.)

*pow(1+a*b,AA/2.));

} else {

FA=pow(a,1-AA/2.)*(pow(a+b,-1+AA/2.)*pow(1+a*b,-AA/2.)

+b*pow(1+a*b,-1+AA/2.)*pow(y,-1+AA)*pow(a+b,-AA/2.));

}

for FA, and similar for FB .

The behaviour for small y is flat, thanks to the step functions, except if a = 0, which is suppressed. This
means that expanding FX − FX |y=0 in the region near y = 0 doesn’t give us a well-defined value for m.
We therefore use m = 1.

Problematic limits

First we note that A = 1 corresponds to a SCETII type observable, the SCETII branch of SoftSERVE

must be used for that parameter value, accordingly, for all other values we can simply use the SCETI
branch and adjust the parameter for different runs.
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There is further again a zero/divergence in the correlated emission functions at a = 0, which we catch the
same way as for the C-parameter. This renders the functions well-behaved, any other zero/divergence is
overlapping and needs a = 0, or is killed by the if-clause (e.g. y → 0).

E.6 Thrust

Thrust is merely a special case of the angularities with A = 0, any and all relevant input can be easily
derived.

E.7 Gauge boson production at large pT

Weak gauge boson production at large transverse momentum is one of the easiest observables exhibiting
angular dependence. The origin of this dependence is the presence of a third jet against which the boson
recoils. It turns out[10] that although this third jet does not give additional diagrammatic contributions,
its presence breaks rotational invariance around the beam axis, which introduces the angular dependence.

As before, the Laplace space soft function has the correct form measurement function for SoftSERVE,
with[10]

ω(k, l) = nj · (k + l) = k+ + k− − 2
√
k+k− cos θk + l+ + l− − 2

√
l+l− cos θl (E.12)

Using the correlated emission parametrisation, we find

ω(k, l) = pT y
− 1

2

(
1 + y − 2

√
ay

(a+ b)(1 + ab)
(b ck + cl)

)
. (E.13)

Inverting any of y, a or b has no effect up to relabelling ck and cl, so

n = −1 FA = FB = 1 + y − 2

√
ay

(a+ b)(1 + ab)
(b ck + cl) (E.14)

= 1 + y − 2

√
ay

(a+ b)(1 + ab)
(b (1− 2tk) + 1− 2tl) (E.15)

where the angular dependence can be written in terms of both ci or ti variables, however you prefer.

Finally, it is readily apparent that FX = c0 +
√
y c1 + . . ., and so m = 0.5.

Problematic limits

There’s a zero hiding at y = a = cl = 1, b = 0 and a potentially difficult limit at a = b = 0 in the
correlated emission, which can be dealt with by setting the function to a constant if either a = 0 or
cl = 1. The other variables involved do not need to be considered, the a = 0 and cl = 1 limits are
suppressed on their own.

E.8 Transverse Thrust, SCET-1

Transverse Thrust[11] is a hadron collider dijet observable, and therefore in principle needs four Wilson
lines (2 jets, 2 beams) in the Soft function. It is, however, possible to reconstruct the anomalous di-
mension from related observables: leptonic dijet (0→ 2 jets) and hadronic 0-jet (2→ 0 jets) Transverse
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Thrust. The former is a SCET-1 observable, the latter is of SCET-2 type. Here we consider the SCET-1
component. The SCET-2 component can be found below.

Non-standard RG equation

Transverse Thrust is one of the most computationally complicated observables we’ve treated so far, with
its functional dependence on the emission momenta reading

ω(k, l) =
∑
p=k,l

1

2|s|

√(
(p− − p+)s+ 2c cp

√
p+p−

)2
+ 4(1− c2p)p+p− (E.16)

− 1

2|s|
∣∣(p− − p+)s+ 2c cp

√
p+p−

∣∣ , (E.17)

where s and c are the sine and cosine of the angle between beam- and jet- axes, and are used as parameters,
and must be declared and defined as usual3.

Naively we would now apply parametrisations, read off parameters and measurement functions, and run
through the whole sequence of steps to get the bare soft function. And then we’d encounter a problem:

So far, all of our observables had measurement exponentials of the form

M = exp(−τω(k, l)), (E.18)

and they fulfilled Laplace space RG equations of the form

dS(τ)

lnµ
=

1

n

[
γs + ΓCusp lnµτeγe

]
S(τ). (E.19)

For this type of observables we have a script (./laprenorm), which does the extraction of the 2-loop
contribution to γs much quicker than we could ever do manually.

Transverse Thrust in [11], however, fulfils a Laplace space RGE of the form4

dSTT (τ)

lnµ
=

1

n

[
γs + ΓCusp ln

µτeγe

4s2

]
STT (τ). (E.20)

If we use the scripts provided, this would amount to shifting a term −ΓCusp ln 4s2 to the non-cusp part
of the anomalous dimension. We’d have to manually account for that.

Alternatively we can define τ̃ = τ
4s2 , and use the fact that the τ that appears in the RGE also appears

in the measurement exponential. We can therefore account for multiplicative factors by shifting them
between τ and the functions F and G which multiply it.

We therefore perform such a shift, and use the measurement exponential

M = exp(−τ̃ ω̃(k, l)), (E.21)

3see E.5
4See its eq. 4.5, where κ maps onto our Laplace space τ̄−1.

43



with

ω̃(k, l) =
∑
p=k,l

2s

√(
(p− − p+)s+ 2c cp

√
p+p−

)2
+ 4(1− c2p)p+p− (E.22)

− 2s
∣∣(p− − p+)s+ 2c cp

√
p+p−

∣∣ , (E.23)

Using the correlated emission parametrisation we find

ω̃(k, l) =
4s pT√
y

[
b

√√√√( as

2(1 + ab)
+

c ck
√
ay√

(a+ b)(1 + ab)
− sy

2(a+ b)

)2

+
ay(1− c2k)

(a+ b)(1 + ab)

− b

∣∣∣∣∣ as

2(1 + ab)
+

c ck
√
ay√

(a+ b)(1 + ab)
− sy

2(a+ b)

∣∣∣∣∣
+

√√√√( s

2(1 + ab)
+

c cl
√
ay√

(a+ b)(1 + ab)
− asy

2(a+ b)

)2

+
ay(1− c2l )

(a+ b)(1 + ab)

−

∣∣∣∣∣ s

2(1 + ab)
+

c cl
√
ay√

(a+ b)(1 + ab)
− asy

2(a+ b)

∣∣∣∣∣
]
.

(E.24)

Naively we would now conclude that n = −1 due to the leading factor in the string of functions. However,
an expansion around y = 0 shows that ω ∼ √y to leading order. We must therefore factor out a factor
of
√
y , i.e. n = 1. Inverting y, a or b (and exchanging ck, cl if b is inverted), we find and read off

FA = 4s

[
b

√√√√( as

2(1 + ab)y
+

c ck
√
a√

(a+ b)(1 + ab)y
− s

2(a+ b)

)2

+
a(1− c2k)

(a+ b)(1 + ab)y

− b

∣∣∣∣∣ as

2(1 + ab)y
+

c ck
√
a√

(a+ b)(1 + ab)y
− s

2(a+ b)

∣∣∣∣∣
+

√√√√( s

2(1 + ab)y
+

c cl
√
a√

(a+ b)(1 + ab)y
− as

2(a+ b)

)2

+
a(1− c2l )

(a+ b)(1 + ab)y

−

∣∣∣∣∣ s

2(1 + ab)y
+

c cl
√
a√

(a+ b)(1 + ab)y
− as

2(a+ b)

∣∣∣∣∣
]

FB = 4s

[
b

√√√√( as

2(1 + ab)
+

c ck
√
a√

(a+ b)(1 + ab)y
− s

2(a+ b)y

)2

+
a(1− c2k)

(a+ b)(1 + ab)y

− b

∣∣∣∣∣ as

2(1 + ab)
+

c ck
√
a√

(a+ b)(1 + ab)y
− s

2(a+ b)y

∣∣∣∣∣
+

√√√√( s

2(1 + ab)
+

c cl
√
a√

(a+ b)(1 + ab)y
− as

2(a+ b)y

)2

+
a(1− c2l )

(a+ b)(1 + ab)y

−

∣∣∣∣∣ s

2(1 + a)b
+

c cl
√
a√

(a+ b)(1 + ab)y
− as

2(a+ b)y

∣∣∣∣∣
]
,

(E.25)
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When we use these formulae in Input Measurement Correlated.cpp we now must explicitly insert an
if-clause to resolve the limit y → 0, because cmath can of course not simply evaluate the function there.
The limit of y → 0 is for e.g. FA:

FA|y→0 =
4a(1− c2l ) + 4b(1− c2k)

(a+ b)
(E.26)

Accordingly the function definition in Input Measurement Correlated.cpp takes the schematic form
(double brackets are short for entire code segments)

double FA(decimal v,decimal t6,decimal y,decimal t5,decimal u,decimal b) {

[[variable definitions]]

if ( y<=0. ) {

FA= [[analytic limit for y=0]];

} else {

FA= [[Full expression]];

}

if ( a<=0. || cl>=1. || cl<=1. ) {

FA=1.;

}

[[predefined error corrections and return]]

}

where we again introduced a clause capturing the zeroes that are present when either a→ 0 or (cl, ck)→
(±1,±1), or (cl, b)→ (±1, 0). Only capturing a and cl is enough, as we know from our thorough reading
of the manual’s appendices that the integrand vanishes as a→ 0, or cl → ±1. We do therefore not have
to specify that the problematic points only affect submanifolds of the cl = 0 hyperplane5. The entire
hyperplane does not contribute. We can skip the second if-clause nailing down the ck = ±1 or b = 0
constraints, which would in principle be required to fully localise the zero, as well.

To top off the list of difficulties, expanding the functions F around y = 0 shows that we have m = 0.5,
as for section E.7.

Problematic limits

As already mentioned the non-trivial and non-zero limits of y → 0 must be handled properly.

Also there are zeroes at a = 0, or |cl| = 1 together with certain values for b and ck , which must be
captured in the code, as done above.

Rounding errors - multiprecision

Finally, the potentially large cancellation between root and absolute value is a problem for computer-
based methods, because the usual data types (double, mainly) only resolve a certain finite number of
digits. For Transverse Thrust this is an actual problem, and the “vanilla” flavour of SoftSERVE is not

5The submanifolds being the b = 0 or ck = ±1 hyper2planes.
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able to calculate this bare soft function. Using more digits solves this problem, we therefore need to call
make [target] BOOST=1 to compile the executable for whatever [target] colour structure we need.

The default multiprecision backbone is provided by the header-only boost library. Two additional flavours
of GMP are implemented via the boost library, but these need to be compiled before use, and are therefore
not set as the default. More information can be found in the main manual.

E.9 pT resummation

Apart from being the first SCETII case in this list, the soft function relevant for transverse momentum
resummation is schematically not terribly difficult, compared to others, with one exception: as it naturally
arises in Fourier space, its measurement function includes an imaginary unit:

M(k, l) = exp(−iτω(k, l)) = exp(−2iτpT

√
a

(a+ b)(1 + ab)
(cl + bck)) (E.27)

It therefore falls under the special case outlined in appendix A of the SoftSERVE manual, and accordingly
we provide the source files for the required input, which is a SoftSERVE run on the input involving the
measurement function |F |, which yields n = 0 (i.e. SCETII), and

FA = FB = 2

√
a

(a+ b)(1 + ab)
|cl + bck| = 2

√
a

(a+ b)(1 + ab)
|1− 2tl + b(1− 2tk)| (E.28)

We merely have to remember that after getting the results for this observable, we have to run the
./fourierconvert script before renormalising.

Non-trivial limits

As so often, there is a zero at a = 0, which we handle as usual. There is also an overlapping zero
at cl = ±0 with appropriate values for b or ck. This latter zero resides in the bulk of the integration
region, but only constitutes a lower dimensional hypersurface, which has measure zero. We therefore
simply set the measurement function to 1 for relevant points. Additionally there is a non-trivial limit at
(a, b) = (0, 0), which is already covered by the a = 0 zero.

E.10 Other observables

The other template examples we provide do not contain any difficulties we haven’t addressed here yet,
and all appearing features are found in other observables, as listed in table E.1.
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